M.Sc Chemistry

Programme Educational Objectives (PEOs)

PEO	Upon completion of M.Sc. degree programme, the graduates
PEO - 1	apply scientific and computational technology to solve social issues and pursue research
PEO - 2	continue to learn and advance their careers in industry both in public and private sectors, government and academia
PEO - 3	imbibe ethical standards, teamwork, leadership, communication skills and professionalism with global competencies addressing chemistry related issues to the society

Programme Outcomes (POs)

РО	Upon completion of M.Sc. degree programme, the graduates will be able to:
PO-1	acquire scientific skills and innovative ideas in their own discipline
PO-2	identify, formulate, perform research and contribute to the developmental needs of the society
PO-3	develop a multidisciplinary perspective and contribute to the knowledge capital of the globe
PO-4	emerge as expressive, ethical and responsible citizens with proven expertise

Programme Specific Outcomes (PSOs)

PSO	Upon completion of M.Sc Chemistry programme, the graduates will be able to:
PSO-1	impart in-depth knowledge about various aspects of chemistry within an
	environment committed to excellence
PSO-2	develop critical thinking, technical skills and innovative ideas in analysing and
	solving problems in the field of chemistry
PSO-3	explore and expedite the recent avenues in chemistry research across the globe
	with professional competency
PSO-4	inculcate positive approach towards environment and ecology from the chemistry
	perspective
PSO-5	promote entrepreneurial skills and become self-reliant

Semester I Structure and Bonding (Core I) Subject Code: PG2011

No. of hours per week	Credit	Total no. of hours	Marks
6	5	90	100

Course Outcomes (COs)

CO No.	Upon completion of this course, the students will be able to:	PSO Addressed	Cognitive Level
CO-1	understand the structure and bonding in inorganic compounds	PSO-1	U
CO-2	apply the concepts of chemical bonding to predict the structure of compounds	PSO-2	А
CO-3	analyze the types of bonding, crystal lattices and crystal defects	PSO-2	Y
CO-4	evaluate bond energy, lattice energy and properties of inorganic compounds	PSO-2	E

Semester I Reaction Mechanism and Stereochemistry (Core II) Subject Code: PG2012

No. of hours per week	Credit	Total no. of hours	Marks
6	5	90	100

CO No.	Upon completion of this course, the students will be able to:	PSO Addressed	Cognitive Level
CO-1	understand the basic concepts of reaction mechanisms, stereochemistry and conformation in organic compounds	PSO-1	U
CO-2	apply the reaction mechanism, stereochemistry and conformation for the synthesis of organic compounds	PSO-2	А
CO-3	analyse the types of reaction mechanisms involved in synthetic organic transformation.	PSO-2	Y
CO-4	create novel organic compounds	PSO-3,4	С

Semester I Chemical Kinetics and Electrochemistry (Core III) Subject Code: PG2013

No. of hours per week	Credit	Total no. of hours	Marks
6	5	90	100

Course Outcomes (COs)

CO No.	Upon completion of this course, the students will be able to:	PSO Addressed	Cognitive Level
CO-1	understand the concepts of chemical kinetics, catalysis, photochemistry and electrochemistry	PSO-1	U
CO-2	apply the mechanism of kinetics and catalysis to chemical reactions	PSO-2,3	А
CO-3	analyze the principles and applications of kinetics, catalysis, photochemistry and electrochemistry	PSO-2,3	Y
CO-4	evaluate the kinetics and mechanism of chemical reactions	PSO-4	Е

Semester I Analytical Chemistry (Elective I (a))

Subject Code: PG2014

No. of hours per week	Credit	Total no. of hours	Marks
4	3	60	100

CO No.	Upon completion of this course, the students will be able to:	PSO Addressed	Cognitive Level
CO-1	understand the principle and instrumentation of various analytical techniques	PSO-1	U
CO-2	apply the principle of analytical techniques to predict the purity, stability and concentrations of compounds	PSO-2,4	А
CO-3	analyse chemical compound using various analytical techniques	PSO-2,3	Y
CO-4	evaluate the quality and quantity of chemical compounds	PSO-3	Е

Semester I Electrochemistry (Elective I (b))

Subject Code: PG2015

No. of hours per week	Credit	Total no. of hours	Marks
4	3	60	100

Course Outcomes (COs)

CO No.	Upon completion of this course, the students will be able to:	PSO Addressed	Cognitive Level
CO-1	understand the principle of electrochemistry	PSO-1	U
CO-2	apply the concepts of electrochemistry in industries	PSO-2	А
CO-3	analyze the different electrochemical processes	PSO-3	Y
CO-4	create fuel cells	PSO-3,5	С

Semester II Coordination Chemistry (Core IV) Subject Code: PG2021

No. of hours per week	Credit	Total no. of hours	Marks
6	5	90	100

CO No.	Upon completion of this course, the students will be able to:	PSO	Cognitive
		Addressed	Level
CO-1	understand the various theories and reaction mechanisms	PSO-1	U
	related to coordination compounds		
CO-2	apply the theories and reaction mechanisms to determine the	PSO-2	А
	properties of complexes		
CO-3	analyze the reaction mechanism of coordination compounds	PSO-2,3	Y
CO-4	evaluate the magnetic and spectral properties of complexes	PSO-2,3	Е
CO-5	create novel complexes and catalyst	PSO-4,5	С

Semester II Reaction Mechanism and Molecular Rearrangements (Core V) Subject Code: PG2022

No. of hours per week	Credit	Total no. of hours	Marks
6	5	90	100

CO No.	Upon completion of this course, the students will be able to:	PSO Addressed	Cognitive Level
CO-1	understand the mechanisms of organic reactions	PSO-1	U
CO-2	apply the reaction mechanisms to synthesize organic compounds	PSO-2,3	А
CO-3	analyze the type of reactions in organic compounds	PSO-2,3	Y
CO-4	evaluate nucleophilic, electrophilic substitution and elimination reactions in aromatic and aliphatic compounds	PSO-2	E
CO-5	create novel organic compounds	PSO-3,4	С

Course Outcomes (COs)

Semester II Quantum Chemistry and Spectroscopy (Core VI) Subject Code: PG2023

No. of hours per week	Credit	Total no. of hours	Marks
6	5	90	100

CO No.	Upon completion of this course, the students will be able to:	PSO Addressed	Cognitive Level
CO-1	understand the concepts of quantum chemistry, spectroscopy and surface chemistry	PSO-1	U
CO-2	apply the principles of quantum mechanics to simple systems, spectroscopy to characterize compounds and surface chemistry to determine the surface area of surface films and liquids	PSO-2	A
CO-3	analyse molecules using quantum mechanics and spectroscopic techniques	PSO-2,3	Y
CO-4	evaluate eigen values, bond angles, electron density and surface area of simple molecules	PSO-2,3	E

Semester II Research Methodology (Elective II (a)) Subject Code: PG2024

No. of hours per week	Credit	Total no. of hours	Marks
4	3	60	100

Course Outcomes (COs)

CO No.	Upon completion of this course, the students will be able to:	PSO Addressed	Cognitive Level
CO-1	understand the sources of literature survey and analytical techniques for documentation of research and cheminformatics for molecular representation	PSO-1	U
CO-2	apply the features of literature survey in research and analytical techniques to characterize compounds	PSO-2,3	А
CO-3	analyse the sources of research information and chemical compounds	PSO-2,3	Y
CO-4	evaluate the results using analytical techniques	PSO-2,3	Е
CO-5	create a journal article	PSO-3	С

Semester II Nuclear Chemistry (Elective II (b)) Subject Code: PG2025

No. of hours per week	Credit	Total no. of hours	Marks
4	3	60	100

CO No.	Upon completion of this course, the students will be able to:	PSO Addressed	Cognitive Level
CO-1	understand the principles of radioactivity and nuclear reactions	PSO-1	U
CO-2	apply radioactivity in industries and daily life	PSO-3,4	А
CO-3	analyze the types of nuclear reactions and nuclear reactors	PSO-2	Y
CO-4	evaluate radioactivity of chemical compounds	PSO-2,3	Е

Semester I and II Inorganic Chemistry - I (Practical I) Subject Code: PG20P1

No. of hours per week	Credit	Total no. of hours	Marks
4	4	60	100

Course Outcomes (COs)

CO No.	Upon completion of this course, the students will be able to:	PSO Addressed	Cognitive Level
CO-1	understand the methods for the separation and estimation of inorganic compounds	PSO-1	U
CO-2	apply the theoretical concepts to identify inorganic compounds	PSO-2	А
CO-3	analyze inorganic compounds using semi-micro qualitative analysis and paper chromatography	PSO-2,3	Y
CO-4	evaluate the quantity of inorganic compounds	PSO-2,3	Е

Semester I and II Organic Chemistry (Practical II) Subject Code: PG20P2

No. of hours per week	Credit	Total no. of hours	Marks
4	4	60	100

Course Outcomes (COs)

.

CO No.	Upon completion of this course, the students will be able to:	PSO Addressed	Cognitive Level
CO-1	understand the methods for the separation and estimation of organic compounds	PSO-1	U
CO-2	apply the theoretical concepts to identify and synthesise organic compounds	PSO-2	А
CO-3	analyse the elements and functional groups using microscale analysis	PSO-2	Y
CO-4	evaluate the quality and quantity of organic compounds	PSO-2,3	Е
CO-5	create organic compounds using various rearrangement reactions	PSO-4,5	С

Semester III Organic Spectroscopy (Core VII) Subject Code: PG2031

Hours per week	Credits	Total Hours	Marks
6	5	90	100

Course Outcomes (COs)

СО	Upon completion of this course, the students will be able to:	PSO Addressed	CL
CO-1	understand the principle and applications of various spectroscopic techniques	PSO-1	U
CO-2	apply the spectroscopic concepts to determine the structure of organic compounds	PSO-2,3	А
CO-3	analyze the functional groups, molecular formula, structure and spectral data of compounds	PSO-2,3	Y
CO-4	evaluate the purity, structure and molecular mass of compounds using various spectroscopic methods	PSO-2,3	E
CO-5	create and characterize novel organic compounds	PSO-3,4	С

Semester III Thermodynamics and Group Theory (Core VIII) Subject Code: PG2032

Hours per week	Credits	Total Hours	Marks
6	5	90	100

CO	Upon completion of this course, the students will be able to:	PSO Addressed	CL
CO-1	understand the concepts and applications of thermodynamics and group theory	PSO-1	U
CO-2	apply thermodynamics and group theory to determine thermodynamic parameters, vibrations and hybrid orbitals	PSO-2	А
CO-3	analyze the thermodynamic functions, point groups and normal mode of vibration of molecules	PSO-2	Y
CO-4	evaluate the thermodynamic parameters and delocalization energy in molecules	PSO-2	Ε

Semester III

Advanced Topics in Chemistry (Elective III (a))

Subject Code: PG2033

Hours per week	Credits	Total Hours	Marks
4	4	60	100

Course Outcomes (COs)

СО	Upon completion of this course, the students will be able to:	PSO Addressed	CL
CO-1	understand the principles and application of advanced areas in chemistry	PSO-1	U
CO-2	apply the principle of nanochemistry and green chemistry to design and synthesise novel compounds	PSO-2,3	А
CO-3	analyze the properties of nanoparticles, supramolecular interactions, therapeutic action of drugs and reactions in biomolecules	PSO-2,3	Y
CO-4	evaluate atom economy in green synthesis, structure and therapeutic action of various drugs and role of singlet oxygen in biology	PSO-2,4	E
CO-5	create novel nanoparticles and compounds using green chemistry techniques	PSO-3,4	С

Semester III

Medicinal Chemistry (Elective III (b))

Subject Code: PG2034

Hours per week	Credits	Total Hours	Marks
4	3	60	100

СО	Upon completion of this course, the students will be able to:	PSO Addressed	CL
CO-1	understand the classification, nomenclature and therapeutic action of drugs	PSO-1	U
CO-2	apply the therapeutic values of drugs	PSO-2	А
CO-3	analyze the chemical constituents and its therapeutic values of drugs	PSO-2	Y
CO-4	evaluate the role of metals in drugs	PSO-2	Е

Semester IV Inorganic Spectroscopy, Photochemistry and Organometallics (Core IX) Subject Code: PG2041

Hours per week	Credits	Total Hours	Marks
6	5	90	100

CO	Upon completion of this course, the students will be able to:	PSO Addressed	CL
CO-1	understand the principles and concepts of inorganic spectroscopy, photochemistry and organometallics.	PSO-1	U
CO-2	apply the principles of spectroscopy, photochemistry and organometallic chemistry to inorganic compounds.	PSO-2	А
CO-3	analyse the structure, reactions and functions of inorganic compounds.	PSO-2	Y
CO-4	evaluate the spectral data and properties of inorganic compounds	PSO-3	Е

Course Outcomes (COs)

Semester IV Photochemistry and Natural Products (Core X) Subject Code: PG2042

Hours per week	Credits	Total Hours	Marks
6	5	90	100

• .

СО	Upon completion of this course, the students will be able to:	PSO Addressed	CL
CO-1	understand various organic reactions and their mechanism	PSO-1	U
CO-2	apply the reaction mechanism in organic synthesis	PSO-2	А
CO-3	analyze the structure and mechanism of reactions	PSO-2	Y
CO-4	evaluate the synthetic utility of reactions	PSO-2	Е

Semester IV Polymer chemistry (Core XI) Sub Code: PG2043

Hours per week	Credits	Total Hours	Marks
6	5	90	100

Course Outcome (COs)

СО	Upon completion of this course, the students will be able to:	PSO Addressed	CL
CO -1	Understand the concept of polymer chemistry	PSO - 1	U
CO -2	Apply the processing techniques in the manufacture of synthetic polymer	PSO - 5	А
CO -3	Analyze glass transition temperature, crystallinity and degradation in polymers.	PSO - 3	Y
CO -4	Evaluate molecular weight and size of the polymer	PSO - 3	Е

Semester IV Energy for Future (Elective IV (a)) Subject Code: PG2044

Hours per week	Credits	Total Hours	Marks
4	3	60	100

.

•	Course Outcomes (COs)				
CO	Upon completion of this course, the students will be able	PSO	CL		
	to:	Addressed			
CO-1	understand the importance of various sources of non- conventional energy	PSO-1	U		
CO-2	apply the principle of energy conversion to <he production<="" th="">of energy for the future</he>	PSO-2,3,4	А		
CO-3	analyze the advantages and disadvantages of different non-conventional energy sources	PSO-2,3	Y		
CO-4	evaluate solar energy radiation, wind energy data and conversion efficiency of fuel cells	PSO-2,3	E		
CO-5	create fuel cells	PSO-3,5	С		

Semester IV Nanochemistry (Elective IV (b)) Subject Code: PG2045

Hours per week	Credits	Total Hours	Marks
4	3	60	100

CO	Upon completion of this course, the students will be able to:	PO Addressed	CL
CO-1	understand the basic concept of nanochemistry and its applications	PSO-1	U
CO-2	apply the principle of nanotechnology for the synthesis and characterization of nanomaterials in various fields	PSO-2,3	А
CO-3	analyze the physical and chemical properties of nanoparticles	PSO-2,3	Y
CO-4	evaluate the properties of nanoparticles using various analytical techniques	PSO-2,3	E
CO-5	create and characterize novel nanomaterials	PSO-3,4	С

(\mathbf{CO}) . ~ ~

Semester III and IV

Inorganic Chemistry (Practical III)

Subject Code: PG20P3

Hours per week	Credits	Total Hours	Marks
4	4	40	100

СО	Upon completion of this course, the students will be able	PSO	CL
	to:	Addressed	
CO-1	understand the principle for the separation, estimation and preparation of inorganic compounds	PSO-1	U
CO-2	apply the principle of volumetric and gravimetric analysis for the separation and estimation of metal ions in a mixture	PSO-2,3	А
CO-3	analyze the procedure for the estimation and preparation of inorganic compounds	PO-2	Y
CO-4	evaluate the amount of metal ions present in a mixture	PSO-2,3	Е
CO-5	create novel inorganic complexes	PSO-3,4	С

Semester III and IV

Physical Chemistry (Practical IV)

Subject Code: PG20P4

Hours per week	Credits Total Hours		Marks
4	4	40	100

СО	Upon completion of this course, the students will be able to:	PSO	CL
		Addressed	
CO-1	understand the principle of conductometric and	PSO-1	U
	potentiometric titrations		
CO-2	apply the principles of conductometry and potentiometry to	PSO-2	Ар
	determine the strength of unknown solutions.		
CO-3	analyze the strength of acids by adsorption method	PSO-3	Y
CO-4	evaluate conductance ,dissociation constant and heat of	PSO-5	Е
	solution		